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Abstract

Design of a boundary in a material and in a structure is in principle an identical problem. However, for structures, we

mostly assume the external loads to be given, while in the design for material moduli, the loads are evaluated from

forced displacements and the loads are therefore design dependent. In the present study, we shall focus on the in¯uence

of these di�erent load assumptions. Also, the in¯uence of PoissonÕs ratio and of material non-linearity will be shown.

Based on sensitivity analysis, we also obtain general information.

The objective may be the sti�est design, the strongest design or just a design of uniform energy density along the

shape. In an energy formulation, it was proven earlier that these three objectives have the same solution, at least within

the limits of geometrical constraints, including the parametrization. Without involving stress/strain ®elds, this proof

holds good for 3D problems, for power-law non-linear elasticity and for anisotropic elasticity. With this background,

the results of a number of in¯uence studies are presented. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

From the recent papers, Pedersen (1998a, 1999), we have the following results:
· The minimum compliance shape design (sti�est shape design) will have uniform energy density along the

designed shape, as far as the geometrical constraints make this possible.
· If we furthermore assume that the highest energy densities are found at the designed shape, then the stif-

fest design will also be the strongest design, as de®ned by a design that minimizes the maximum energy
density.
These rather general statements were backed up by a variety of solved problems, initiated around 1973.

The aim of the statements was to get more mutual contact between three directions of active research. In
mechanical and civil engineering, the focus has been on design for minimum stress concentration (Ding,
1986). In the material and more mathematically oriented research, the focus has been on design for
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minimum compliance (Vigdergauz, 1986). Some heuristic approaches have focused on design for uniform
stress (Xie and Steven, 1997).

The assumptions behind the statements were naturally discussed with focus on the importance of geo-
metrical constraints and parametrization. The results of a follow-up study have been published in Pedersen
(1999) with speci®c interest in material design. The problem of designing the shape of a hole in order to
maximize the homogenized bulk modulus was given special attention and a very simple parametrization
was chosen. The same parametrization will be applied in the present paper. Agreement with earlier results
of Vigdergauz (1986) and with Hashin±Shtrikman bounds (Grabovsky and Kohn, 1995), is obtained and
the independence of PoissonÕs ratio on the optimal shapes was numerically found for these square-sym-
metric problems. As we shall see in the present paper this independence is generally not the case.

A further interesting result from this follow-up study is a very simple optimality criterion, which we shall
here prove in more general terms. This optimality criterion gives rise to an e�cient optimization procedure.
Using this tool, the goal of this paper is to study the in¯uence of the following aspects.
· in¯uence from boundary conditions,
· in¯uence from PoissonÕs ratio,
· in¯uence from material non-linearity.

In summary, the main conclusions are
· The compliance of a structure or a material is rather insensitive to a variation of the shape.
· The energy density concentration is very sensitive to a variation of the shape.
· If a shape of constant energy density along the shape boundary is found, then the compliance is station-

ary.
· A design for stationary compliance may return high energy density concentration if geometrical con-

straints (parametrization) are a controlling parameter.
· In a ®nite domain problem, load applied by stress and load applied by forced displacements will give

di�erent optimal shapes.
· Especially for dense structures with given forced displacements, di�erent PoissonÕs ratios of an isotropic

material will in general give di�erent optimal shapes. However, for given applied stresses the optimal
shape is proven to be independent.

· Also, the non-linearity of a material will be re¯ected in the optimal design, but the in¯uence is not very
strong.

2. An optimality criterion and a method

From a more general point of view, we will here present the optimality criterion used in Pedersen (1999).
This optimality criterion is the basis for the optimal designs to be shown. Let the shape S (surface or curve)
be described by the design parameters hi. Then, the solid volume V as well as the resulting elastic energy U
depend on these design parameters

S � S hi� �; V � V hi� �; U � U hi� �: �2:1�
By variation from a given volume V � V , we must satisfy

dV �
X

i

oV
ohi

dhi � 0 �2:2�

and, furthermore, we want to locate a solution of stationary elastic energy, i.e.

dU �
X

i

oU
ohi

dhi � 0: �2:3�
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We shall ®rst prove that a design with constant energy density along the shape boundary will be a solution
and then later address the problem of determining such a design. Assume a non-linear elastic material,
described by the potential of strain energy density u � E�q�1

e = q� 1� �, where E is a ®xed modulus of elas-
ticity and �e is the reference strain (for 1D problems this gives r � E�q). Then the gradient of the total elastic
energy U, with respect to any design parameter hi that do not change the actual load, is

oU
ohi
� ÿ 1

q
oU
ohi

� �
fixed strain

: �2:4�

The proof of this can be found in Pedersen (1998b). This also holds for the involved forced displacements:
from a theoretical point of view this gives design-dependent loads, but in a model with ®nite degrees of
freedom and without direct element connections from the boundaries with forced displacements to the
designed shape, this in¯uence disappears.

Next, we assume a domain-divided model (say elements in a ®nite element model)

V �
X

e

Ve; U �
X

Ue �
X

ueVe; �2:5�

where ue is the mean strain energy density in domain e. Then, the volume constraint (2.2) will be

dV �
X

i

X
e

oVe

ohi

 !
dhi � 0 �2:6�

and the stationarity condition (2.3) with Eq. (2.4) is written

dU � ÿ 1

q

X
i

X
e

ue

oVe

ohi

 !
dhi � 0 �2:7�

because ue is constant in a ®xed strain ®eld. It now follows that if ue is constant throughout the domains
connected to the shape to be designed oVe=ohi 6� 0� �, then dV � 0 implies dU � 0. Note that, as shown
in Pedersen (1999), we can have stationary solutions dU � 0 without constant mean strain energy density,
but as we see, not vice versa. However, without geometrical constraints (including the design para-
metrization), a stationary elastic energy will imply constant energy density along the boundary to be de-
signed.

With a Lagrangian function L � U ÿ k V ÿ V
ÿ �

to be made stationary, it follows from Eqs. (2.6) and
(2.7) that the necessary optimality condition isX

e

ue

oVe

ohi

X
e

,
oVe

ohi
� k for all hi: �2:8�

The Lagrangian multiplier k is found from V � V
ÿ �

.
For a single inclusion hole as shown in Fig. 1 we only use three non-dimensional design parameters

a; b and g. For this three-parameter problem the criterion (2.8) is simpli®ed because the involved
P

oVe=ohi

can be determined analytically. The resulting necessary optimality criterion is

a
X

s

us
oVs

oa
� b

X
s

us
oVs

ob
� g2

p�g�
X

us
oVs

og
� k �2:9�

restricted to summation over elements s at the shape boundary and with p�g� de®ned by

p g� � � 2W 2=g� � ÿW 1=g� � ÿW g�� � 1�=g�; �2:10�
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where W is the Psi-function. For a detailed derivation of this result see Pedersen (1999). At ®rst the a; b g-
parametrization may seem too simple. However, the obtained results show almost uniform energy density
along the optimal shapes and thus prove the versatility of this parametrization.

Optimal designs are located by an iterative method where the shape parameters are rede®ned with the
goal of satisfying the optimality criterion (2.9). Volume V depends monotonically on the parameters a; b
and g and rapid convergence is experienced. The procedure is a traditional optimality criterion method and
details will therefore not be given.

Before the results from the study of in¯uence of boundary conditions, PoissonÕs ratio and material non-
linearity are presented; we shall show the in¯uence from the volume constraint. With reference to Fig. 1, we
de®ne the relative density q as the ratio of the area of the solid part (hatched) and the total area (4AB). The
asymptotic case of q! 1 is a small hole for which classical analytical design results are available. The other
asymptotic case of q! 0 gives a frame structure and we shall concentrate on the intermediate cases of say
0:26 q6 0:8.

The most simple case of design for maximum bulk modulus for a 2D material is with the parametrization
in Fig. 1 described by a single parameter g, with A � B and a � b uniquely determined by q and g. The
resulting optimal designs are shown in Fig. 2(a) with the curves in Fig. 2(b) giving the resulting Hashin±
Shtrikman bounds. For this case the obtained optimal designs are independent of PoissonÕs ratio, but the
resulting bulk moduli are highly dependent. That this is not the case in general will be shown in Section 4.

Fig. 1. The simpli®ed shape parametrization used in Pedersen (1999) for material design.

Fig. 2. (a) The optimal shape parameter g as a function of relative volume density q and (b) the resulting 2D-bulk modulus j for three

di�erent values of PoissonÕs ratio m.

468 P. Pedersen / International Journal of Solids and Structures 38 (2001) 465±477



Note in Fig. 2(b) that for negative PoissonÕs ratio an almost linear dependence of j as a function of q,
while for positive PoissonÕs ratio a higher order dependence is observed. In a recent paper of Bendsùe and
Sigmund (1999), this is discussed in detail.

In addition to this dependence of sti�ness (bulk modulus) we show in Fig. 3 for the case of zero PoissonÕs
ratio the dependence of strength (maximum energy density). We note that for low volume densities, say
q < 0:3, we have moderate concentration of energy densities and almost linear dependence on q. However,
for more continuum models, the strength (energy concentration) is more sensitive to q than the sti�ness
(bulk modulus). This aspect relates to the recent work on topology optimization with stress constants, as by
Duysinx and Bendsùe (1998).

3. In¯uence of boundary conditions

Without involving optimization it is useful to study solutions, where the shape of the model in Fig. 1 is
determined only by the parameter g (power of the super-elliptic function). We assume a symmetric model
A � B, which with a constant solid area gives the values a � b for a chosen parameter g. Three di�erent
load cases are analyzed:
· forced boundary displacements at x � A, y � B, corresponding to pure mean dilatation

�y � �x � 0:001;

· forced boundary stresses at x � A, y � B, corresponding to pure mean hydrostatic pressure

rx � ry � 0:0006 �modulus of elasticity C1111 � 1�;
· a mixed problem with forced boundary displacement at x � A, corresponding to �x � 0:001, and forced

boundary stresses at y � B, corresponding to ry � 0:0006.
Note that for an in®nitesimally small hole, these three problems are identical. With zero PoissonÕs ratio

the Hashin±Shtrikman bound for the bulk modulus with relative solid area q � 0:75 is 0.3, and thus
r=� � rx= 2�x� � � 0:3 gives rx � 0:6�x (Pedersen, 1999). The results of the analyses are shown in Fig. 4 in

Fig. 3. Resulting 2D-bulk modulus (equal to the Hashin±Shtrikman upper bound) and the resulting maximum energy density, both for

the shapes in Fig. 1 and for zero PoissonÕs ratio.
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terms of the mean strain energy densities in the solid areas (macroscopic bulk modulus � �1=2�umean � q �
�3=8�umean). Note, how insensitive the compliance (proportional to umean) is in this large design domain
1:7 < g < 2:4.

The lower curve refers to the solutions with forced boundary displacements, and we notice a maximum of
umean at g � 2:26 and an agreement with the Hashin±Shtrikman bound.

The middle curve refers to the solutions with forced boundary stresses and we notice a minimum of umean

at g � 1:84 and that the bound is not reached. The upper curve represents the solutions with mixed loads
and here no stationary solution is located. This is due to the fact that the stationary solution is not sym-
metric, i.e. a 6� b.

Based on the optimality criterion (2.9) we then optimize the model with the mixed load case. The
convergence history is shown in Fig. 5 and we notice an oscillating convergence of all the parameters
g; a and b as well as of the objective umean for which a stationary solution is then found.

Fig. 4. Results of a one-parameter study, with mean strain energy density umean�g� as a function of the shape parameter g. The value

from the Hashin±Shtrikman bound is umean � 0:8.

Fig. 5. Convergence history for the model with a mixed load case and three design parameters g; a and b. Also the objective umean is

shown.
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Lastly, in Fig. 6, we illustrate the di�erent designs and the resulting boundary strain energy densities. In
the initial non-optimal models, we see clearly the non-uniform distribution of energy density along the
boundary of the hole. As seen, the corresponding optimal models (stationary total energy) have much more
uniform distributions, although the simple parametrization does not allow for completely uniform solu-
tions.

Even in recent literature on elastic compliances, as shown in the interesting paper by Zheng and Hwang
(1997), the derivations are based on the given remote stresses. The present results show that the case of the
given remote displacements is di�erent, as we shall also see in Section 4.

4. In¯uence of Poissons ratio

The study in Section 3 was based on isotropic, zero PoissonÕs ratio linear elasticity. This was done to put
the focus on the di�erent boundary conditions. In earlier optimizations, it was found that the optimal shape
depended strongly on the anisotropy (Pedersen et al., 1992), but a weak dependence on PoissonÕs ratio and
on the non-linearity was found. We will in this section go deeper into the in¯uence of PoissonÕs ratio and
focus on the in¯uence on the optimal shape design, rather than on the resulting stresses, strains and en-
ergies. It will be seen that for non-symmetric problems (�x 6� �y) the in¯uence cannot always be neglected.

Fig. 6. Starting designs in the upper row with g � 2 and optimal solutions in the lower row with the left column: showing forced

displacements with g � 2:26, middle column: showing forced stresses with g � 1:84, right column: showing mixed loads with g � 1:96

and a � 0:92b. Energy densities along the boundaries in black and isolines for the larger principal stresses.
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In the three papers by Thorpe and Jasiuk (1992), Cherkaev et al. (1992) and by Christensen (1993) the
homogenized modulus of elasticity is proven to be independent of PoissonÕs ratio m for the basic material of
an isotropic composite. Note the critical comments in Zheng and Hwang (1997). In papers by Vigdergauz,
as referred in Grabovsky and Kohn (1995), the shape for maximum bulk modulus is also found inde-
pendent of m although the bulk modulus itself, as shown in Fig. 2, depends strongly on m.

For more general problems with given forced displacements the objective and also the optimal shape
depend on m, and the intention of this section is to show this by an example. Before doing this, we shall
through sensitivity analysis get more detailed information and separate this in¯uence of m into the local
in¯uence when the stress or strain ®eld is kept unchanged and the more global in¯uence from a redistri-
bution of these ®elds. From this it follows that the three sources are
· a general scaling factor,
· a further local change for ®xed strains or ®xed stresses,
· a global redistribution of displacements, strains and stresses.

For an isotropic material, the energy densities can be evaluated from the principal stresses rI; rII and/or
the principal strains �I; �II. Thus, we only need part of the constitutive relations

rI

rII

� �
� C1111 C1122

C1122 C1111

� �
�I

�II

� �
: �4:1�

With the same C1111 all over the structure, this will only be a scaling factor and the ratio

l :� C1122=C1111 ÿ 1 < l < 1 �4:2�
is thus the important parameter. With a plane stress assumption we have, l � m (PoissonÕs ratio) and with a
plane strain assumption we have l � m= 1ÿ m� �. Also the ratio of principal stresses and the ratio of principal
strains are important parameters and we de®ne

c :� �II=�I ÿ 16 c6 1;

f :� rII=rI ÿ 16 f6 1:
�4:3�

Then, the constitutive behaviour is rewritten to

rI
1
f

� �
� C1111�I

1 l
l 1

� �
1
c

� �
: �4:4�

It follows from Eq. (4.4) that we can express f in l and c or c in l and f

f � l� � c�= 1� � lc�; c � f� ÿ l�= 1� ÿ lf�; �4:5�
which is always valid as lc > ÿ1 and lf < 1. The conditions in Eq. (4.3) are satis®ed, i.e., the numerically
larger �I and rI are aligned. Note that c � 0 implies f � l and f � 0 implies c � ÿl.

For linear elasticity, the strain energy density u and the stress energy density uC have the same value,
which is determined by

u � uC � 1
2

rI�I� � rII�II� � 1
2
rI�I 1� � fc�: �4:6�

Using relations (4.4) and (4.5), we can express this as

u � 1
2
C1111�

2
I 1
ÿ � 2lc� c2

� �4:7�
or by

uC � r2
I

2C1111 1ÿ l2� � 1
ÿ ÿ 2lf� f2

�
: �4:8�
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We have the global scaling factors C1111 and 1ÿ l2� �. In fact, for the plane stress models, we have
C1111 1ÿ l2� � � E= 1ÿ m2� �� � 1ÿ m2� � � E and therefore no scaling. The main conclusion from Eqs. (4.7) and
(4.8) is that even in a ®xed strain ®eld or a ®xed stress ®eld the energy density will, in addition to the global
scaling factor, depend on the ratio l � C1122=C2222 and we will only have no in¯uence with unidirectional
strain c � 0� � or with unidirectional stress f � 0� �.

At the free boundary to be designed, we have unidirectional stress. Thus, if we can prove the stress ®eld
to be unchanged, then the optimal shape will be independent of l, i.e. independent of Poisson's ratio. With
the given boundary stresses in equilibrium this is true for 2D linear elastic problems (Muskhelishvili, 1963,
pp. 160±161). Numerical results for our actual problems con®rm this.

However, with given boundary displacements the optimal design will depend on l, i.e. depend on
Poisson's ratio. To get some information for this case also, we shall then set up a global sensitivity analysis,
primarily with respect to the nodal displacements in a ®nite element model. In addition to the ratio
l � C1122=C1111 we have for isotropic models C1212=C1111 � 1ÿ l� �=2. With this being the case for the total
model, the total sti�ness matrix is linear in l and we have

S� � Df g � �S0�� � l�S1�� Df g � Af g; �4:9�
where Df g are the nodal displacements and Af g the nodal load obtained by either prescribed boundary
stresses or by prescribed boundary displacements. For Af g not directly dependent on l we must solve

S� � o Df g
ol
� ÿ�S1� Df g �4:10�

and for Af g � ÿ S0� � � l S1� �� � Dff g, where Df gf is the vector of forced displacements, we must solve

�S� ofDg
ol
� ÿ�S1�

�
fDfg � fDg

�
�4:11�

to get o Df g=ol and from this the sensitivities of the strain and the stress ®elds.
For the symmetric problems in Pedersen (1999), we have seen independence on l, but for non-symmetric

problems this is not the case. In Fig. 7, we show the rather strong in¯uence for an actual problem with only
weak non-symmetry described by ��x � 1:2��y .

5. In¯uence of elastic non-linearity

In the sensitivity analysis relative to PoissonÕs ratio, we have identi®ed three sources of possible in¯uence
from the ratio l � C1122=C1111. On the local level, the scaling in¯uence through C1111 and 1ÿ l2� � and the
further in¯uence depending on the ratio of principal stresses or strains according to Eqs. (4.7) and (4.8). On
the global level, we have the in¯uence through a redistribution of the stress/strain ®elds. We shall perform a
somewhat similar analysis for non-linear elasticity described by re � E�q

e , where re; �e are the e�ective stress,
strain de®ned relative to energy densities (Pedersen, 1998b). In general, we have

u� uC � rI�I � rII�II �5:1�
and, as also shown in Pedersen (1998b),

uC � qu: �5:2�
It then follows that the generalizations of Eqs. (4.7) and (4.8) are

u � 1

1� q
C1111�

2
I 1
ÿ � 2lc� c2

� �5:3�
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and

uC � q
1� q

r2
I

C1111 1ÿ l2� � 1
ÿ ÿ 2lf� f2

�
: �5:4�

On the local level, we have directly from Eqs. (5.3) and (5.4) that in a ®xed strain ®eld or in a ®xed stress
®eld we get proportional changes with respect to the non-linearity parameter q

ou
oq

� �
fixed strains

� ÿ 1

1� q
u; �5:5�

ouC

oq

� �
fixed stresses

� 1

q 1� q� � u
C: �5:6�

Thus, this local in¯uence from the non-linearity parameter q will not change a characteristic of constant
energy density and the optimality criterion will still be satis®ed.

We then perform a sensitivity analysis to get information about the global change of the displacement
®eld d Df g=dq, strain ®eld and stress ®eld. The ®nite element formulation for this is

Fig. 7. In¯uence of PoissonÕs ratio for an isotropic material, non-symmetric displaced ��x � 1:2��y . Strain energy densities at boundaries

in black and isolines for the larger principal stresses.
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�S� d Df g
dq
� d Af g

dq
ÿ d S� �

dq
Df g: �5:7�

Let us assume a constant stress, strain, energy density element and that the strain state in element e is of
magnitude �e that relates to the actual strain energy density ue by

ue � 1

q� 1
E�q�1

e ; �5:8�

where E is a ®xed modulus of elasticity, see Pedersen (1998b) for discussion of this de®nition of �e. Then the
element sti�ness matrix Se� � can be written with relative strain ~�e � �e=�o

Se� � � ~�qÿ1
e

~Se

h i
; �5:9�

where ~Se

� �
is not dependent on q. Then, we get

d Se� �
dq
� ln ~�e

� �
�qÿ1

e
~Se

h i
� ln ~�e

� �
Se� �: �5:10�

Thus, for elements of equal energy density (equal e�ective strains �e), we get proportional change of the
sti�ness matrices. From this follows the result in Pedersen and Taylor (1993) that in thickness design the
optimal design does not depend on the non-linearity q.

However, for shape design the e�ective strain �e is only constant along the boundary and thus a re-
distribution of displacements, strains and stresses will take place. As we see in the example in Fig. 8, the

Fig. 8. Change in optimal design for increasing non-linearity q � 0:75, 0.50, 0.25. Energy densities at boundaries in black and isolines

for the larger principal stresses.
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optimal shape only changes slightly, probably due to the fact that the change in �e is only in the direction
orthogonal to the shape.

6. Conclusion

The examples in this follow-up study con®rm the ®nding that compliance is very insensitive to changes in
the boundary shape of a hole. In contrast to this, the concentration of energy density is very sensitive and
we need to be careful with the details of the shape design.

A simple optimality criterion method was used to optimize shapes for given boundary displacements as
well as with given boundary stresses. Not only the convergence history but also the optimal design depends
on these di�erent boundary conditions. An example, which for an in®nite domain should give the same
results, shows this aspect for a ®nite model.

In the optimal design for maximum bulk modulus (symmetric problem) there is no in¯uence on the
optimal design from PoissonÕs ratio. In a sensitivity analysis, the dependence is discussed more generally
and an example shows the rather strong dependence for a non-symmetric problem with forced boundary
displacements. It follows from the sensitivity analysis that this dependence is related to the overall redis-
tribution of the displacement ®eld when PoissonÕs ratio is changed. With given boundary stresses, the
optimal shape is proven to be independent of PoissonÕs ratio for cases with unchanged stress ®elds, which
include the test cases.

In a somewhat similar sensitivity analysis, the in¯uence from material non-linearity is analyzed. Again,
an overall redistribution of the displacement ®eld causes a change in the optimal shape. However, the
change in the optimal shape is not very drastic for the test cases, compared with the change in the level of
energy densities.
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