INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 465-477

On the influence of boundary conditions, Poisson’s ratio and
material non-linearity on the optimal shape

Pauli Pedersen *

Department of Solid Mechanics, Technical University of Denmark, Building 404, 2800 Lyngby, Denmark
Received 9 February 2000

Abstract

Design of a boundary in a material and in a structure is in principle an identical problem. However, for structures, we
mostly assume the external loads to be given, while in the design for material moduli, the loads are evaluated from
forced displacements and the loads are therefore design dependent. In the present study, we shall focus on the influence
of these different load assumptions. Also, the influence of Poisson’s ratio and of material non-linearity will be shown.
Based on sensitivity analysis, we also obtain general information.

The objective may be the stiffest design, the strongest design or just a design of uniform energy density along the
shape. In an energy formulation, it was proven earlier that these three objectives have the same solution, at least within
the limits of geometrical constraints, including the parametrization. Without involving stress/strain fields, this proof
holds good for 3D problems, for power-law non-linear elasticity and for anisotropic elasticity. With this background,
the results of a number of influence studies are presented. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

From the recent papers, Pedersen (1998a, 1999), we have the following results:

e The minimum compliance shape design (stiffest shape design) will have uniform energy density along the
designed shape, as far as the geometrical constraints make this possible.

o If we furthermore assume that the highest energy densities are found at the designed shape, then the stif-
fest design will also be the strongest design, as defined by a design that minimizes the maximum energy
density.

These rather general statements were backed up by a variety of solved problems, initiated around 1973.
The aim of the statements was to get more mutual contact between three directions of active research. In
mechanical and civil engineering, the focus has been on design for minimum stress concentration (Ding,
1986). In the material and more mathematically oriented research, the focus has been on design for
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minimum compliance (Vigdergauz, 1986). Some heuristic approaches have focused on design for uniform

stress (Xie and Steven, 1997).

The assumptions behind the statements were naturally discussed with focus on the importance of geo-
metrical constraints and parametrization. The results of a follow-up study have been published in Pedersen
(1999) with specific interest in material design. The problem of designing the shape of a hole in order to
maximize the homogenized bulk modulus was given special attention and a very simple parametrization
was chosen. The same parametrization will be applied in the present paper. Agreement with earlier results
of Vigdergauz (1986) and with Hashin—-Shtrikman bounds (Grabovsky and Kohn, 1995), is obtained and
the independence of Poisson’s ratio on the optimal shapes was numerically found for these square-sym-
metric problems. As we shall see in the present paper this independence is generally not the case.

A further interesting result from this follow-up study is a very simple optimality criterion, which we shall
here prove in more general terms. This optimality criterion gives rise to an efficient optimization procedure.
Using this tool, the goal of this paper is to study the influence of the following aspects.

e influence from boundary conditions,

e influence from Poisson’s ratio,

¢ influence from material non-linearity.

In summary, the main conclusions are
e The compliance of a structure or a material is rather insensitive to a variation of the shape.

e The energy density concentration is very sensitive to a variation of the shape.

e If a shape of constant energy density along the shape boundary is found, then the compliance is station-
ary.

e A design for stationary compliance may return high energy density concentration if geometrical con-
straints (parametrization) are a controlling parameter.

e In a finite domain problem, load applied by stress and load applied by forced displacements will give
different optimal shapes.

e Especially for dense structures with given forced displacements, different Poisson’s ratios of an isotropic
material will in general give different optimal shapes. However, for given applied stresses the optimal
shape is proven to be independent.

e Also, the non-linearity of a material will be reflected in the optimal design, but the influence is not very
strong.

2. An optimality criterion and a method

From a more general point of view, we will here present the optimality criterion used in Pedersen (1999).
This optimality criterion is the basis for the optimal designs to be shown. Let the shape S (surface or curve)
be described by the design parameters /4;. Then, the solid volume V" as well as the resulting elastic energy U
depend on these design parameters

By variation from a given volume ¥ = ¥V, we must satisfy
oV
— O (2.2)
and, furthermore, we want to locate a solution of stationary elastic energy, i.e.
ou
dU = —dh; =0. (2.3)

O,
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We shall first prove that a design with constant energy density along the shape boundary will be a solution
and then later address the problem of determining such a design. Assume a non-linear elastic material,
described by the potential of strain energy density u = Ee/™!/(q + 1), where E is a fixed modulus of elas-
ticity and e, is the reference strain (for 1D problems this gives ¢ = Ee?). Then the gradient of the total elastic
energy U, with respect to any design parameter /; that do not change the actual load, is

ou 1 /0U
_ 1 ) 2.4
ahi q <ahl )ﬁxed strain ( )

The proof of this can be found in Pedersen (1998b). This also holds for the involved forced displacements:
from a theoretical point of view this gives design-dependent loads, but in a model with finite degrees of
freedom and without direct element connections from the boundaries with forced displacements to the
designed shape, this influence disappears.

Next, we assume a domain-divided model (say elements in a finite element model)

V:ZV;, U:ZUe:Zﬁelfe7 (2.5)

where . is the mean strain energy density in domain e. Then, the volume constraint (2.2) will be

deZ( 2Z>dh—0 (2.6)

1

and the stationarity condition (2.3) with Eq. (2.4) is written

1 _ B
= 72: <Zuah> dh; =0 (2.7)

because i, is constant in a fixed strain field. It now follows that if 7% is constant throughout the domains
connected to the shape to be designed (0V./0h; # 0), then dV = 0 implies dU = 0. Note that, as shown
in Pedersen (1999), we can have stationary solutions dU = 0 without constant mean strain energy density,
but as we see, not vice versa. However, without geometrical constraints (including the design para-
metrization), a stationary elastic energy will imply constant energy density along the boundary to be de-
signed.

With a Lagrangian function ¥ = U — A(V — I_/) to be made stationary, it follows from Egs. (2.6) and
(2.7) that the necessary optimality condition is

v, )
oh A for all ;. (2.8)

The Lagrangian multiplier 2 is found from (¥ = 7).

For a single inclusion hole as shown in Fig. 1 we only use three non-dimensional design parameters
o, f and 7. For this three-parameter problem the criterion (2.8) is simplified because the involved }_ 0V, /0k;
can be determined analytically. The resulting necessary optimality criterion is

v 0 o7
oy U—=p Uy— = ), 29
D gy =P 3 ,; o 2= (29)
restricted to summation over elements s at the shape boundary and with p(y) defined by

p(n) =2¥Q2/n) = YA /n) = ¥((n+1)/n), (2.10)
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Fig. 1. The simplified shape parametrization used in Pedersen (1999) for material design.

where ¥ is the Psi-function. For a detailed derivation of this result see Pedersen (1999). At first the o, -
parametrization may seem too simple. However, the obtained results show almost uniform energy density
along the optimal shapes and thus prove the versatility of this parametrization.

Optimal designs are located by an iterative method where the shape parameters are redefined with the
goal of satisfying the optimality criterion (2.9). Volume V' depends monotonically on the parameters o, 8
and 5 and rapid convergence is experienced. The procedure is a traditional optimality criterion method and
details will therefore not be given.

Before the results from the study of influence of boundary conditions, Poisson’s ratio and material non-
linearity are presented; we shall show the influence from the volume constraint. With reference to Fig. 1, we
define the relative density p as the ratio of the area of the solid part (hatched) and the total area (44B). The
asymptotic case of p — 1 is a small hole for which classical analytical design results are available. The other
asymptotic case of p — 0 gives a frame structure and we shall concentrate on the intermediate cases of say
0.2<p<0.38.

The most simple case of design for maximum bulk modulus for a 2D material is with the parametrization
in Fig. 1 described by a single parameter #, with A = B and « = § uniquely determined by p and 5. The
resulting optimal designs are shown in Fig. 2(a) with the curves in Fig. 2(b) giving the resulting Hashin—
Shtrikman bounds. For this case the obtained optimal designs are independent of Poisson’s ratio, but the
resulting bulk moduli are highly dependent. That this is not the case in general will be shown in Section 4.

0.8
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Fig. 2. (a) The optimal shape parameter 5 as a function of relative volume density p and (b) the resulting 2D-bulk modulus x for three
different values of Poisson’s ratio v.
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Fig. 3. Resulting 2 D-bulk modulus (equal to the Hashin—Shtrikman upper bound) and the resulting maximum energy density, both for
the shapes in Fig. 1 and for zero Poisson’s ratio.

Note in Fig. 2(b) that for negative Poisson’s ratio an almost linear dependence of « as a function of p,
while for positive Poisson’s ratio a higher order dependence is observed. In a recent paper of Bendsee and
Sigmund (1999), this is discussed in detail.

In addition to this dependence of stiffness (bulk modulus) we show in Fig. 3 for the case of zero Poisson’s
ratio the dependence of strength (maximum energy density). We note that for low volume densities, say
p < 0.3, we have moderate concentration of energy densities and almost linear dependence on p. However,
for more continuum models, the strength (energy concentration) is more sensitive to p than the stiffness
(bulk modulus). This aspect relates to the recent work on topology optimization with stress constants, as by
Duysinx and Bendsee (1998).

3. Influence of boundary conditions

Without involving optimization it is useful to study solutions, where the shape of the model in Fig. 1 is
determined only by the parameter 1 (power of the super-elliptic function). We assume a symmetric model
A = B, which with a constant solid area gives the values o = f for a chosen parameter #. Three different
load cases are analyzed:

o forced boundary displacements at x = A, y = B, corresponding to pure mean dilatation
€

', =& = 0.001,
o forced boundary stresses at x = A, y = B, corresponding to pure mean hydrostatic pressure
o, =0, = 0.0006 (modulus of elasticity Cy;;; = 1),

o a mixed problem with forced boundary displacement at x = A, corresponding to €, = 0.001, and forced
boundary stresses at y = B, corresponding to o, = 0.0006.
Note that for an infinitesimally small hole, these three problems are identical. With zero Poisson’s ratio
the Hashin—Shtrikman bound for the bulk modulus with relative solid area p = 0.75 is 0.3, and thus
/€ =0,/(2¢,) = 0.3 gives g, = 0.6¢, (Pedersen, 1999). The results of the analyses are shown in Fig. 4 in
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Fig. 4. Results of a one-parameter study, with mean strain energy density #men(17) as a function of the shape parameter #. The value
from the Hashin—Shtrikman bound is #me,, = 0.8.

terms of the mean strain energy densities in the solid areas (macroscopic bulk modulus = (1/2)umean - p =
(3/8)tmean). Note, how insensitive the compliance (proportional to #me,,) is in this large design domain
1.7<n<24.

The lower curve refers to the solutions with forced boundary displacements, and we notice a maximum of
Umean at 1 =~ 2.26 and an agreement with the Hashin—Shtrikman bound.

The middle curve refers to the solutions with forced boundary stresses and we notice a minimum of e
at n ~ 1.84 and that the bound is not reached. The upper curve represents the solutions with mixed loads
and here no stationary solution is located. This is due to the fact that the stationary solution is not sym-
metric, i.e. o # f.

Based on the optimality criterion (2.9) we then optimize the model with the mixed load case. The
convergence history is shown in Fig. 5 and we notice an oscillating convergence of all the parameters
n, aand f as well as of the objective uye,, for which a stationary solution is then found.

2\4—’\57 8 10 12 14
teration

n/2

st Umean
0.8

0.6 — ﬂ
a

0.5L

Fig. 5. Convergence history for the model with a mixed load case and three design parameters 1, o and . Also the objective uye,y 1S
shown.
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Initial designs n = 2

Displacement loads Stress loads Mixed loads
era—

Umax = 1.58 Umax = 1.69 Umax = 1.61
Umean = 0.799 Umean = 0.817 Uspean = 0.844

Optimal designs

i

n =226 n = 184 =19 a= 0.928
Umax = 1.34 Umax = 1.57 Umax = 1.46
Upean = 0.800 Upean = 0.816 Umean = 0.814

Fig. 6. Starting designs in the upper row with 1 =2 and optimal solutions in the lower row with the left column: showing forced
displacements with # = 2.26, middle column: showing forced stresses with # = 1.84, right column: showing mixed loads with n = 1.96
and o = 0.92f. Energy densities along the boundaries in black and isolines for the larger principal stresses.

Lastly, in Fig. 6, we illustrate the different designs and the resulting boundary strain energy densities. In
the initial non-optimal models, we see clearly the non-uniform distribution of energy density along the
boundary of the hole. As seen, the corresponding optimal models (stationary total energy) have much more
uniform distributions, although the simple parametrization does not allow for completely uniform solu-
tions.

Even in recent literature on elastic compliances, as shown in the interesting paper by Zheng and Hwang
(1997), the derivations are based on the given remote stresses. The present results show that the case of the
given remote displacements is different, as we shall also see in Section 4.

4. Influence of Poissons ratio

The study in Section 3 was based on isotropic, zero Poisson’s ratio linear elasticity. This was done to put
the focus on the different boundary conditions. In earlier optimizations, it was found that the optimal shape
depended strongly on the anisotropy (Pedersen et al., 1992), but a weak dependence on Poisson’s ratio and
on the non-linearity was found. We will in this section go deeper into the influence of Poisson’s ratio and
focus on the influence on the optimal shape design, rather than on the resulting stresses, strains and en-
ergies. It will be seen that for non-symmetric problems (€, # €,) the influence cannot always be neglected.
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In the three papers by Thorpe and Jasiuk (1992), Cherkaev et al. (1992) and by Christensen (1993) the
homogenized modulus of elasticity is proven to be independent of Poisson’s ratio v for the basic material of
an isotropic composite. Note the critical comments in Zheng and Hwang (1997). In papers by Vigdergauz,
as referred in Grabovsky and Kohn (1995), the shape for maximum bulk modulus is also found inde-
pendent of v although the bulk modulus itself, as shown in Fig. 2, depends strongly on v.

For more general problems with given forced displacements the objective and also the optimal shape
depend on v, and the intention of this section is to show this by an example. Before doing this, we shall
through sensitivity analysis get more detailed information and separate this influence of v into the local
influence when the stress or strain field is kept unchanged and the more global influence from a redistri-
bution of these fields. From this it follows that the three sources are
e a general scaling factor,

e a further local change for fixed strains or fixed stresses,
e a global redistribution of displacements, strains and stresses.

For an isotropic material, the energy densities can be evaluated from the principal stresses a1, a;; and/or
the principal strains e, ¢;;. Thus, we only need part of the constitutive relations

a1 Cin Cuxn |/ «
= . 4.1
{UH} {Cuzz Cuu]{ql} (41)
With the same Cjyj; all over the structure, this will only be a scaling factor and the ratio

ni= C1122/C1111 -1 <u< 1 (42)
is thus the important parameter. With a plane stress assumption we have, u = v (Poisson’s ratio) and with a
plane strain assumption we have u = v/(1 — v). Also the ratio of principal stresses and the ratio of principal
strains are important parameters and we define

yi=en/a  —1<y<],

{:==oufor —1<{<L

Then, the constitutive behaviour is rewritten to

{8 210}

It follows from Eq. (4.4) that we can express { in g and y or y in u and {

(=u+/Q+w);  v=C—-w/(1-w), (4.5)

which is always valid as yy > —1 and p{ < 1. The conditions in Eq. (4.3) are satisfied, i.e., the numerically
larger ¢ and o} are aligned. Note that y = 0 implies { = ¢ and { = 0 implies y = —pu.

For linear elasticity, the strain energy density « and the stress energy density u¢ have the same value,
which is determined by

u= uC = %(0'161 + GHEH) = %0[6[(1 + C’))) (46)
Using relations (4.4) and (4.5), we can express this as
MZ%CMMEIZ(I +2W+V2> (4.7)
or by
o2
U = o (1 —2ul + £). (4.8)
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We have the global scaling factors Cyjp and (1 — p?). In fact, for the plane stress models, we have
Cin (1 —12) = (E/(1 —v?))(1 —v?) = E and therefore no scaling. The main conclusion from Egs. (4.7) and
(4.8) is that even in a fixed strain field or a fixed stress field the energy density will, in addition to the global
scaling factor, depend on the ratio p = Cj12/Ca and we will only have no influence with unidirectional
strain (y = 0) or with unidirectional stress ({ = 0).

At the free boundary to be designed, we have unidirectional stress. Thus, if we can prove the stress field
to be unchanged, then the optimal shape will be independent of , i.e. independent of Poisson’s ratio. With
the given boundary stresses in equilibrium this is true for 2D linear elastic problems (Muskhelishvili, 1963,
pp. 160-161). Numerical results for our actual problems confirm this.

However, with given boundary displacements the optimal design will depend on y, i.e. depend on
Poisson’s ratio. To get some information for this case also, we shall then set up a global sensitivity analysis,
primarily with respect to the nodal displacements in a finite element model. In addition to the ratio

u = Ci122/Ci111 we have for isotropic models Cj,1/Cyi1p = (1 — w)/2. With this being the case for the total
model, the total stiffness matrix is linear in u and we have
[S{D} = ([So] + u[Si){D} = {4}, (4.9)

where {D} are the nodal displacements and {4} the nodal load obtained by either prescribed boundary
stresses or by prescribed boundary displacements. For {4} not directly dependent on u we must solve

51520 — i) (4.10)
and for {4} = —([So] + u[S1]){Dr}, where {D}, is the vector of forced displacements, we must solve
N %]/3} =—[5] <{Df} + {D}) (4.11)

to get 0{D}/0u and from this the sensitivities of the strain and the stress fields.

For the symmetric problems in Pedersen (1999), we have seen independence on p, but for non-symmetric
problems this is not the case. In Fig. 7, we show the rather strong influence for an actual problem with only
weak non-symmetry described by €, = 1.2,.

5. Influence of elastic non-linearity

In the sensitivity analysis relative to Poisson’s ratio, we have identified three sources of possible influence
from the ratio u = Cj12/Ci11. On the local level, the scaling influence through Cjyq; and (1 — %) and the
further influence depending on the ratio of principal stresses or strains according to Egs. (4.7) and (4.8). On
the global level, we have the influence through a redistribution of the stress/strain fields. We shall perform a
somewhat similar analysis for non-linear elasticity described by g. = Ee?, where o, €, are the effective stress,
strain defined relative to energy densities (Pedersen, 1998b). In general, we have

u~+u€ = o161 + ayen (5.1)
and, as also shown in Pedersen (1998b),

u¢ = qu. (5.2)
It then follows that the generalizations of Egs. (4.7) and (4.8) are

1
=—C 2(1 4+ 2 2 53
u 114 111161( + W‘H’) (5.3)
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a) 0,classical design  ¢) v = — 0.4,designb) €) v = 0.4,designb)
2

y =
n= a = 1.208

—
Umean = 1.0 (ref)) Umean = 0.685 Umean = 1.098
= 1.97 Umax 1.03 Umax

Il
g
N
o)

Umax

— 0.4, optimal design f)v = 0.4 , optimal design
231 a = 1548 n =228 a=1118
— )

b) v = 0, optimal design dyv
n =228 a=1238 7

—

Upmean = 1.001 Umean = 0.688 Upean = 1.100
Umax = 1.66 Umax = 0.92 Umax = 2.40

Isotropic material with Cj113 = 1, square domain A = B, solid part p = 0.75,
mean strains & = 1.2&

Fig. 7. Influence of Poisson’s ratio for an isotropic material, non-symmetric displaced €, = 1.2€,. Strain energy densities at boundaries
in black and isolines for the larger principal stresses.

and

2
c q g 2

= 1 —2ul + . 5.4
! l1+gq C1111(1—/J2)( He C) (54)

On the local level, we have directly from Egs. (5.3) and (5.4) that in a fixed strain field or in a fixed stress
field we get proportional changes with respect to the non-linearity parameter ¢

0 1
aq fixed strains 1 + q

C
<6L> Ol (5.6)
aq fixed stresses q(l + q)

Thus, this local influence from the non-linearity parameter ¢ will not change a characteristic of constant
energy density and the optimality criterion will still be satisfied.

We then perform a sensitivity analysis to get information about the global change of the displacement
field d{D}/dg, strain field and stress field. The finite element formulation for this is
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gD} _dia) _dis)

8%, = 4y~ g (O) (57)

Let us assume a constant stress, strain, energy density element and that the strain state in element e is of
magnitude e, that relates to the actual strain energy density u, by

1
= q+1
Ue py 1Eee , (5.8)

where E'is a fixed modulus of elasticity, see Pedersen (1998b) for discussion of this definition of ¢,. Then the
element stiffness matrix [S,] can be written with relative strain ¢, = e./¢,

IS¢ = &t {S] (5.9)
where [S.] is not dependent on g. Then, we get
d([j‘j;} —In (56)63*1 {S] ~In (e) [S.). (5.10)

Thus, for elements of equal energy density (equal effective strains ¢.), we get proportional change of the
stiffness matrices. From this follows the result in Pedersen and Taylor (1993) that in thickness design the
optimal design does not depend on the non-linearity g.

However, for shape design the effective strain ¢, is only constant along the boundary and thus a re-
distribution of displacements, strains and stresses will take place. As we see in the example in Fig. 8, the

g=1 q =05

N POWER LAW
o = FEe?

ORTHOTROPIC
Cinp =1 Cyp =01
Cip =03 Cpp =03

D
n = 1987 n = 2.086 RECTANGULAR
A =125B
Umax/Umean = 1.95 umax/umean =233
q =075 g =025

NON-UNIFORM
MEAN STRAIN

vy = 2v, atboundary

SOLID PART
p =085
|
n = 2.019 n = 2219
umax/umean =211 umax/umean = 2.78

Fig. 8. Change in optimal design for increasing non-linearity ¢ = 0.75, 0.50, 0.25. Energy densities at boundaries in black and isolines
for the larger principal stresses.
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optimal shape only changes slightly, probably due to the fact that the change in €, is only in the direction
orthogonal to the shape.

6. Conclusion

The examples in this follow-up study confirm the finding that compliance is very insensitive to changes in
the boundary shape of a hole. In contrast to this, the concentration of energy density is very sensitive and
we need to be careful with the details of the shape design.

A simple optimality criterion method was used to optimize shapes for given boundary displacements as
well as with given boundary stresses. Not only the convergence history but also the optimal design depends
on these different boundary conditions. An example, which for an infinite domain should give the same
results, shows this aspect for a finite model.

In the optimal design for maximum bulk modulus (symmetric problem) there is no influence on the
optimal design from Poisson’s ratio. In a sensitivity analysis, the dependence is discussed more generally
and an example shows the rather strong dependence for a non-symmetric problem with forced boundary
displacements. It follows from the sensitivity analysis that this dependence is related to the overall redis-
tribution of the displacement field when Poisson’s ratio is changed. With given boundary stresses, the
optimal shape is proven to be independent of Poisson’s ratio for cases with unchanged stress fields, which
include the test cases.

In a somewhat similar sensitivity analysis, the influence from material non-linearity is analyzed. Again,
an overall redistribution of the displacement field causes a change in the optimal shape. However, the
change in the optimal shape is not very drastic for the test cases, compared with the change in the level of
energy densities.
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